Cellular taphonomy of well-preserved Gaoyuzhuang microfossils: A window into the preservation of ancient cyanobacteria

Zixiao Guoa,b, Xiaotong Penga,*, Andrew D. Czajac, Shun Chena, Kaiwen Taa

a Deep Sea Science Division, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
b University of Chinese Academy of Sciences, Beijing 100049, China
c Department of Geology, University of Cincinnati, PO Box 210013, Cincinnati, OH 45221-0013, USA

A R T I C L E I N F O
Keywords:
Gaoyuzhuang Formation
Microfossil
Cyanobacteria
Taphonomy
Morphological alteration
Molecular structure

A B S T R A C T
The \(
\sim 1500 \text{ Ma}
\) Gaoyuzhuang microfossils, a representative Mesoproterozoic cyanobacteria assemblage, are crucial for understanding and searching for early Precambrian life on Earth. The cellular taphonomy of fossils in this assemblage is poorly known, however. Here we combined \textit{in situ} microscopic and microanalytical techniques to study the detailed taphonomy of these microfossils. Light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show that Gaoyuzhuang microfossils are mainly preserved in black chert layers and that silica particles can be found within fossilized cell walls and sheaths. Raman spectra show the characteristic first-order bands (at \(~ 1350 \text{ and } 1605 \text{ cm}^{-1}\)) of carbonaceous material comprising microfossils, indicating that they have experienced peak temperatures of \(~ 215 \text{ to } 308 \text{ °C}\). Raman maps show the spatial distribution of the carbonaceous matter as well as that of the silica matrix, consistent with nano-scale secondary ion mass spectrometry (NanoSIMS) analyses. Variations in \(^{13}C\) versus \(^{12}C\) and \(^{34}S\) versus \(^{32}S\) within individual microfossils are likely the result of original differences in the isotopic compositions of cellular components. Confocal laser scanning microscopy (CLSM) analyses provide fluorescence-based 2-D and 3-D images of the cellular components of such microfossils at high spatial resolution. The microscale chemical, isotopic and structural heterogeneities together with the subcellular morphological features support the preferential preservation of cyanobacterial cell walls and sheaths over cell contents in Precambrian chert. We proposed a potential taphonomic model, perhaps responsible for the high fidelity of preservation, for such microfossils permineralized in Precambrian rocks. The integrated approach has potential for deciphering the enigmatic nature of Mesoproterozoic microorganisms preserved in stromatolitic cherts, with significant implications for microbial preservation in the geological record.

1. Introduction
Cyanobacteria are a dominant, long-ranging and successful group of prokaryotic organisms, which are organically preserved in the geological record of most of Earth’s history, possibly dating back 3500 million years (Ma) ago although relaxed molecular clocks suggest cyanobacteria originated about 2500–2600 Ma ago (Schoff, 1993, 2002; Schoff and Kudryavtsev, 2012; Shih et al., 2017). For more than half a century, such microfossils have been found in ancient marine and terrestrial aquatic environments from around the world (Barghoorn and Tyler, 1965; Schoff, 1968, 1993; Licari et al., 1969; Schoff et al., 1973, 2005, 2015; Hofmann, 1976; Schoff and Packer, 1987; Goutrsova and Sergei, 1987; Sergei, 1994; Altermann and Schoff, 1995; Xu and Awramik, 2002; Sergei and Schoff, 2010). These cyanobacteria would have played a key role in increasing the amount of oxygen in the oceans and atmosphere on the Earth (House et al., 2000; Williford et al., 2013; Peng et al., 2016; Soo et al., 2017).

The \(~ 1500 \text{ Ma}\) Gaoyuzhuang Formation, exposed on the southern mountain of Pangjiapu, Hebei Province, China, contains some of the best-preserved Proterozoic filamentous and coccolid microfossils (Zhang, 1981; Schoff et al., 1984, 2005; Peng et al., 2016). These microfossils were originally assigned to cyanobacteria on the basis of cell morphology, size, colonial patterns and by comparison with modern analogues (Zhang, 1981), and were subsequently studied in order to address questions about their paleobiology, paleoecology, paleoenvironment and thermal maturity (Schoff et al., 1984, 2005; Seong-Joo and Golubic, 1999; Golubic and Seong-Joo, 1999; Xu and Awramik, 2002). Fossils from this unit were more recently investigated and shown to have typical carbon isotope values (\(^{8}^{13}C\)) for chroococcean cyanobacteria, which implies oxygenic photosynthesis existed in the
Mesoproterozoic anoxic ocean, and confirmed a linear correlation between average in situ $\delta^{13}C_{\text{org}}$ of microfossils and $\delta^{13}C_{\text{carb}}$ of coeval carbonates (Peng et al., 2016). Some of the prominent species of early cyanobacteria in the Gaoyuzhuang microfossils assemblage include Eosynechococcus medius, Glenobotrydion aenigmatis, Nanococcus vulgaris, and Palaeoanacystis vulgaris (Zhang, 1981; Schopf et al., 2005; Peng et al., 2016). The high degree of morphological preservation of this microfossil assemblage assures its use as a baseline with which to study older assemblages preserved in Precambrian rocks.

For a better understanding of cyanobacterial preservation in the geological record, we conducted a cellular taphonomic investigation of Gaoyuzhuang microfossils. The combined in situ techniques of FIB-based imaging, NanoSIMS (nano-scale secondary ion mass spectrometry), Raman spectroscopy, and CLSM (confocal laser scanning microscopy) were used to characterize Gaoyuzhuang microfossils in three dimensions and at submicron spatial resolution, to identify: 1) the ultrastructure of such rock-embedded microfossils; 2) the molecular-chemical characteristics of both the well-preserved microfossils and their embedding minerals; and 3) the organismal morphology of such rock-embedded microfossils. Here, we report three-dimensional organismal morphology, chemical and isotopic composition characteristics for Gaoyuzhuang microfossils and propose a potential taphonomic model for such microfossils. Due to the ancient depositional age and excellent preservation, the Gaoyuzhuang Formation represents a rare window into the preservation of cyanobacteria on the early Earth.

2. Materials and methods

2.1. Sampling location and sample descriptions

Microfossils studied here come from cherty stratiform stromatolites of the ~1500 Ma Gaoyuzhuang Formation, southern mountain of Pangjiapu, Hebei Province, China (Peng et al., 2016). Fig. 1 shows the sampling location and field photos of the cherty stromatolites, characterized by alternating black organic-rich chert bands and white carbonate bands at the centimeter to millimeter scales. The local geology and stratigraphy of the study area has been described in detail elsewhere (Zhang, 1981; Peng et al., 2016). All microfossils were analyzed in ~100-µm-thick polished thin sections cut from rock samples perpendicular to bedding. The samples and their geological background information are summarized in Table 1. This study concentrated on the spheroidal or ellipsoidal cells of this unit in order to provide new insights into cellular taphonomy of well-preserved Gaoyuzhuang microfossils, potentially deciphering cyanobacterial preservation in the geological record.

2.2. Analytical methods

Individual microfossils were observed within polished thin sections using a Leica DM4500P Polarizing Light Microscope. Specimens at the surface of thin sections were selected and photographed in transmitted and reflected light, with which sketch maps were constructed to identify each of the regions of interest (ROIs) for SEM (scanning electron microscopy), TEM (transmission electron microscopy), NanoSIMS, Raman spectroscopy and CLSM.

All microfossils at the surface of the polished thin section were examined with a Philips XL-30 scanning electron microscope equipped with an EDAX energy dispersive X-ray spectrometer and analytical software in Tongji University, China. The SEM was operated at 15 kV with a working distance of 10 mm to provide optimal imaging and minimize charging and sample damage in the backscattered electron (BSE) imaging mode. An accelerating voltage of 20 kV was used for the X-ray analysis to obtain sufficient X-ray counts (Peng et al., 2013, 2016). To prepare TEM lamellae from the polished thin section, dual-beam focused ion beam (FIB) milling was performed with the FEI Helios 600i FIB at the Analysis and Research Center, Shanghai University, China. During FIB milling, the selected microfossils were located and monitored within the dual-beam FIB by using electron beam imaging. TEM data were obtained using a JEM-2100F field emission electron microscope operating at 200 kV in the National Engineering Research Center for Nanotechnology (NERCN), China.

Elemental mapping was performed on the polished thin sections using a Cameca NanoSIMS 50L (CAMECA, Paris, France) at the Institute of Geology and Geophysics, Chinese Academy of Sciences, following the procedure described in Peng et al. (2016). Using a focused primary beam of cesium (Cs+) with an ~2.5 pA intensity, negatively charged secondary ions (^{12}C-, ^{13}C-, $^{12}C^{14}N$-, ^{32}S-, ^{34}S-, $^{55}Mn^{16}O$-, and $^{56}Fe^{16}O_2$-) were sputtered from each ROIs and collected...
simultaneously (multi-collection mode) in electron-multipliers (EMs) at a mass resolution of M/ΔM = 6600. Images obtained from a pre-sputtered area are 256 × 256 pixels and were recorded for ∼30 min.

Raman spectra were obtained by use of a LabRAM HR Evolution (Horiba Jobin Yvon) single-stage system having confocal micro-Raman capabilities, following the procedure described in Schopf et al. (2015). Raman images are able to display the spatial distribution of molecular–structural components of both the well-preserved microfossils and their embedding minerals (Schopf et al., 2005, 2015, 2016). Due to the confocal capability of the system, use of a 100 × objective provided a horizontal resolution of 1 μm and a vertical resolution of 2 μm. A solid state 532 nm laser was used to obtain the major bands of carbonaceous matter (Cm; at ∼1350 and ∼1605 cm⁻¹) by use of a single spectral window. To avoid spectral artifacts caused by polishing, the laser beam was focused on carbonaceous microfossils beneath the surface of polished thin sections (Ammar and Rouzaud, 2012). 2-D and 3-D Raman images were processed by use of the CLS deconvolved to improve X, Y, and Z resolution using Huygens Essentials (Horiba, Edison, NJ).

Confocal fluorescence images were collected with an Olympus Fluoview 1200 CLSM (Olympus, Inc., Shinjuku, Japan) running the FV10-ASW software (v. 3.01) at the University of Cincinnati, following a procedure similar to that described by Czaia et al. (2016). The images shown here were acquired by use of 488 nm laser excitation at 100% transmission (∼300 μW at the sample), a 60 × oil-immersion objective (NA [numerical aperture] = 1.42) with fluorescence-free microscopic immersion oil (Olympus Type-F), and a 505–605 nm bandpass filter to exclude the incident laser wavelength. All images were subsequently deconvolved to improve X, Y, and Z resolution using Huygens Essentials version 16.10 (Scientific Volume Imaging, The Netherlands) (cf. Schopf and Kudryavtsev, 2009). The 2-D images were exported as TIF files and rendered into 3-D images and animated by use of the software program Paraview v. 5.0.1 (Kitware Inc., Clifton Park, NY).

3. Results

To inform our taphonomic model of cyanobacterial preservation, below we provide morphological information in three dimensions and at submicron spatial resolution, as well as elemental and molecular—structural compositions of rock-embedded microfossils (coccolid cyanobacteria) from ∼1500 Ma Gaoyuzhuang Formation of northern China.

3.1. Electron microscopy

Light microscopy (LM) observations show that abundant coccolid microfossils are preserved in the organic-rich siliceous layer but not in the carbonate layer of the stromatolites (Fig. 2a–f). SEM observations, combined with LM, aid in distinguishing whether such fossils are exposed at the surface of a thin section or not (Fig. 2g and h). Based on the FIB-milled lamellae, the high-resolution TEM observations (Fig. 3c and d) show that the preserved microfossil wall and sheath are not entirely continuous, which cannot be observed with LM. The bright-field TEM image (Fig. 3e) shows that the curved, semi-continuous microstructure is of lower mass than the surrounding material. Selected area electron diffraction (SAED) carried out in the TEM (Fig. 3g), along with SEM-EDS data in Peng et al. (2016), confirm that the silica infilled the cell interior of the imaged microfossils and can even be found within the fossilized walls and sheaths. These silica grains within carbonaceous structures are sub-spherical, nano-grains, showing an association with CM within the fossilized walls and sheaths (Fig. 3f). These characteristics are an indicator of syngeneity of the fossilized microorganisms with the mineral matrix (Wacey et al., 2012).

3.2. Raman spectroscopy and imagery

The Raman spectra of CM comprising Gaoyuzhuang microfossils were obtained using polished thin sections. The CM Raman spectrum is composed of two intensive bands in the first-order region (1000–1800 cm⁻¹), the G band (∼1605 cm⁻¹) and D band (∼1350 cm⁻¹), and weaker broad bands in the second-order region (2500–3100 cm⁻¹) (Fig. 4a). The G band (‘G’ denotes graphitic; at 1605 cm⁻¹) is assigned to an E₂g mode vibration of sp²-bonded hexagonal ring structures (Ferrari and Robertson, 2000; Qu et al., 2015). The G-band of graphite is commonly located at ∼1580 cm⁻¹ and can be shifted towards higher wavenumbers due to the confinement effect of the phonons for nanocrystals, such as kerogen and low ordered CM (Ferrari, 2007; Foucher et al., 2015). The D-band is named for a disordered structure and is related to the A₁g, breathing mode vibration of sp² rings in disordered carbonaceous material with defects or heteroatoms in the in-plane domain size of graphene layers (Beyssac et al., 2002; Qu et al., 2015; Dodd et al., 2017).

A compound Raman image of a cluster of coccolidal microfossils (Fig. 4b), acquired in spectral windows centered on the major Raman bands of the materials analyzed (CM at ∼1605 cm⁻¹ and quartz at ∼465 cm⁻¹), shows the relative distribution of CM and the chert matrix (Fig. 4c). The 2-D Raman images of the relative intensity of ∼1605 cm⁻¹-band (defined as I₁605; Figs. 4d and 6l) indicate the relative abundance of organic carbon of different ultrastructures within individual microfossils. The 2-D Raman image of the relative intensity ratio of ∼1350 cm⁻¹ versus ∼1605 cm⁻¹-band (defined as I₁350/1605; Fig. 4e) indicates the structural order of CM comprising microfossils. Using the protocol of Qu et al. (2015), the Raman spectra with intensities of 1350 cm⁻¹ and 1605 cm⁻¹-bands that are lower than c. 5% of the maximum intensities of these two bands in the map were excluded to avoid significant error in the maps of I₁350/1605. Previous studies have proposed that a higher I₁350/1605 value indicates a higher structural order of CM at peak metamorphic temperature lower than 360 °C (Kouketsu et al., 2014; Sforna et al., 2014; Qu et al., 2015, 2017). Additionally, Raman spectra within the range of 1000–1800 cm⁻¹ were deconvoluted into 1172 cm⁻¹, 1257 cm⁻¹, 1348 cm⁻¹, 1490 cm⁻¹, 1590 cm⁻¹, 1611 cm⁻¹, and 1697 cm⁻¹-bands (Fig. 5).

3.3. NanoSIMS analysis

Chemical maps were obtained for most microfossils studied here by use of NanoSIMS. One such example is shown in Fig. 6, which shows the elemental distributions of *Eosynechococcus medius* preserved in the

<table>
<thead>
<tr>
<th>Site</th>
<th>Geologic unit</th>
<th>Age</th>
<th>Lithology</th>
<th>Depositional setting</th>
<th>Fossils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pangqiapu, China</td>
<td>Gaoyuzhuang Formation</td>
<td>∼1500 Ma</td>
<td>Chert and dolomite</td>
<td>Restricted peritidal environment</td>
<td>Cyanobacteria</td>
</tr>
</tbody>
</table>
siliceous layer of a Gaoyuzhuang stromatolite (cf. Fig. 2c and f). The ultra-high-resolution maps show the enrichments of 13C, 12C14N, 32S, and 34S, but not of 55Mn16O and 56Fe16O$_2$ on the microfossil walls (Fig. 6b–h). The ultra-high-resolution maps of 13C versus 12C and 34S versus 32S show the micro-scale isotopic heterogeneities within individual microfossils (Figs. 4f, g and 6j, k). Importantly, these elements are quite consistent with the distribution of organic matter in the cyanobacterial microfossils (Fig. 6). Therefore, the correlated distributions of the metabolically important elements and the microfossils identified by LM, as shown in Fig. 6, provide a biogenic clue for decoding ancient fossil cyanobacteria preserved in the geological record (Oehler et al., 2009; Peng et al., 2016).

3.4. CLSM analysis

Compared with LM and SEM images, 3-D CLSM imaging of the rock-embedded microfossils provides high-resolution morphological information. The laser beam of such systems excites fluorescence emitted from the interlinked polycyclic aromatic hydrocarbons (PAHs) that primarily comprise kerogenous microfossils (Schopf et al., 2005, 2015). As shown in Figs. 7 and 8, CLSM can provide two- and three-dimensional images of coccolith microfossils at appreciably higher spatial resolution than LM. CLSM images of Glenobotrydion aenigmatis, among the most commonly occurring coccolith cyanobacterial fossils known from the Precambrian, clearly indicate some inclusions within their cell (Fig. 7b and e), potentially providing taxonomically important information. Moreover, the 3-D CLSM images acquired can be rotated to show the cyanobacteria fossils studied from different perspectives (Figs. 7c, f and 8c, f, i; see Supplementary materials for their animations).

4. Discussion

The cell-size distribution of 316 measured individual coccolith microfossils from the Gaoyuzhuang Formation (Fig. 2i), based on LM images, shows that they range from 1.5 µm to 10.3 µm in diameter, the mean cell diameter is approximately 4 µm, and that the standard deviation (SD) of cell sizes is 1.3 µm (32% of the mean diameter). The distribution is readily distinguishable from coccolith non-cyanobacterial bacteria and archaea, supporting the classification as chroococccacean cyanobacteria based on morphological observations (Hofmann, 1976; Zhang, 1981; Schopf, 1992, 1996; Seong-Joo et al., 1999; Xu and Awramik, 2002). It is widely acknowledged that the fossilization potential of microbial cells is significantly higher in cherts.
than in other rock types including phosphorites, shales, dolomites, sandstones and limestones (Hofmann, 1976; Kremer et al., 2012; Qu et al., 2017). Even so, the post-mortem silicification of cyanobacterial cells still affects their cellular morphology, chemical composition, and molecular structure to varying degrees (Bartley, 1996; Kremer et al., 2012; Alleon et al., 2016). Understanding the taphonomy of cyanobacterial microfossils can help in searching for and identifying the oldest morphological fossils preserved in the geological record.

As mentioned in Section 3.1, the cyanobacterial microfossils from the Gaoyuzhuang Formation were dominantly preserved in stromatolitic cherts (Fig. 2a–f). Previous and current LM observations suggest that Gaoyuzhuang cyanobacterial microfossils can be morphologically classed as “well preserved” (Zhang, 1981; Peng et al., 2016); however, the TEM data indicate that the carbonaceous microfossil walls and sheaths have been impregnated, locally permineralized by silica grains, showing a pattern similar to the “saw-tooth” pattern described by Wacey et al. (2012) (Fig. 3e–g). The sub-spherical nano-silica grains observed in Gaoyuzhuang microfossils are very similar to those precipitated during simulated cyanobacterial silicification in laboratory experiments (Oehler and Schopf, 1971; Benning et al., 2004), as well as natural silicification of hot spring and submarine hydrothermal microbes (Könhauser et al., 2004; Jones et al., 2005, 2008). The association of amorphous silica and CM within fossilized walls and sheaths could potentially be considered as biosignature in the search for traces of past life on the Earth (Wacey et al., 2012; Foucher and Westall, 2013).

Although the angular nano-fragments of carbon scattered along the edges of silica grains in the interior and exterior of microfossils suggest probably diagenetic redistribution of CM during recrystallization of the
matrix silica (e.g., arrowed in Fig. 3e), almost intact microfossil colonies can be visually observed by their 3-D CLSM images and animations (Figs. 7c, f and 8c, f; i; see Supplementary materials for their animations). The rough microfossil walls and sheaths, consistent with a saw-tooth-like pattern in the distribution of microfossil carbon (cf. Fig. 3f), is likely to result from degradation prior to or/and during silicification; however the coccoidal morphology is still clearly visible (Figs. 7 and 8). Such preservation in three dimensions likely suggests that cyanobacteria were silicified very rapidly after death, even when still alive, indicating the very early diagenetic emplacement of silica prior to degradational collapse (Butterfield, 2003; Wacey et al., 2012).

To further assess the molecular preservation of Gaoyuzhuang organic microfossils, Raman spectra were deconvolved into seven sub-bands (Fig. 5). Two sub-bands (at 1172 and 1257 cm$^{-1}$, respectively) can be identified as broad shoulders on the low-frequency side of the D band at 1348 cm$^{-1}$ (Fig. 5). The band at 1172 cm$^{-1}$ is very weak in the spectra measured here, but is widely interpreted as the symmetric stretch of C–C single bonds of C–C–C bridges between aromatic domains (Schafer et al., 1991; Schopf et al., 2005; Ferralis et al., 2016). The band at 1257 cm$^{-1}$ is assigned to the vibrations of methyl groups in alkane chains or/and deformation modes in fatty acids (Koyama and Ikeda, 1980). These peaks can often be detected in fairly immature CM or functionalized carbon systems including fatty acids but not in highly carbonized or purely graphitic materials (Koyama and Ikeda, 1980; De Gelder et al., 2007). Therefore, the appearance of such peaks is an indicator for well-preserved (less geochemically altered) molecular signatures of rock-embedded organic microfossils (Schopf et al., 2005; Ferralis et al., 2016; Alleon et al., 2016). The other non-
The absence of systematic variations in micro-scale molecular-structural order (Fig. 4) suggests a similar composition for all cyanobacterial cell walls analyzed, consistent with the identical elemental distributions recorded in NanoSIMS maps (Fig. 6). These maps also indicate nearly identical elemental distributions to those reported by Peng et al. (2016) despite the fact that study analyzed different cyanobacterial taxa. One explanation for this phenomenon is that the extracellular polymeric substances of cyanobacteria may be capable of forming organic chelate compounds by binding the heavy metals such as iron to resist post-mortem degradation (Golubic and Barghoorn, 1967; Ferris et al., 1988). Another possibility is that cyanobacterial sheaths are composed principally of cross-linked polysaccharides containing phenolic elements, which potentially accounts for its durability in preservation (Krumbein and Swart, 1983; Robbins, 1992; Bartley, 1996). The latter may be the most plausible explanation because of no metal enrichment on microfossil walls detected using NanoSIMS (see Section 3.3). Post depositional diagenetic alteration also likely played a role in removing minor labile molecular-structural components of the cell walls to increase the similarity of the preserved CM.

Our data about morphological, chemical and molecular structural preservation of the 1500 Ma Gaoyuzhuang microfossils can be used as a baseline to assess other cyanobacterial and other microbial microfossils permineralized in Archean cherts. Based on their restricted peritidal environment (Table 1; Seong-Joo and Golubic, 1999; Xu and Awramik, 2002), we propose a probable taphonomic model for Gaoyuzhuang cyanobacteria, potentially responsible for the fidelity of preservation. In the first stage, abundant silica derived from continental weathering and/or from a hydrothermal vent is dissolved in seawater inhabited by cyanobacteria, possibly resulting in the local formation of silica colloid (Oehler and Schopf, 1971). Cyanobacteria would have been entirely impregnated by a solution of colloidal silica, prior to their degradation (Butterfield, 2003). The highly cross-linked nature of cyanobacterial cell walls and sheaths ensures the preferential preservation of these structures over cell contents (Robbins, 1992; Bartley, 1996). In the second stage, the colloidal silica is transformed in steps into a gel state by evaporation of seawater in the restricted environment (Iller, 1979; Benning et al., 2005). Under a temperature not more than 215–308 °C, the relatively rapid crystallization of chert from silica gel would have been responsible for the intact preservation of ancient cyanobacteria (Ferris et al., 1988; Bartley, 1996; Jones et al., 2004; Kremer et al., 2012; Peng et al., 2013). In the last stage, sea level fluctuation would have resulted in the alternate precipitation of silica and carbonate, ultimately leading to the formation of fossiliferous stromatolitic cherts favorable for the resistance to post-mortem diagenetic alteration. The taphonomic model proposed here has potential for providing crucial information about the formation and preservational conditions of cyanobacterial microfossils preserved in cherts from throughout the Precambrian.

5. Conclusions and implications

The Gaoyuzhuang microfossil assemblage (~1500 Ma; Peng et al., 2016), which includes some of the best-preserved ancient cyanobacteria, has attracted increasing interest in terms of exploring early life on Earth, but its cellular taphonomy has not been widely reported until
now. In this study, combined in situ microscopic and microanalytical techniques were employed to provide Raman, NanoSIMS and CLSM images on Mesoproterozoic cyanobacterial fossils, potentially identifying the molecular structural, chemical, isotopic characteristics and organismal morphology of rock-embedded microfossils in three dimensions and at submicron spatial resolution. Further, we proposed a probable taphonomic model responsible for the fidelity of preservation for Gaoyuzhuang cyanobacteria. Given the prevalent existence of such environments on the early Earth, this taphonomic model proposed here may have occurred in other strata, such as the well-known Gunflint Formation of Ontario, Canada (~1880 Ma; Barghoorn and Tyler, 1965), Avzyan Formation of Russian Federation (~1200 Ma; Sergeev, 1994) and Bitter Springs Formation of central Australia (~830 Ma; Schopf, 1968). Therefore, our data are capable of providing significant insight into the preservation of ancient cyanobacteria and other types of microorganisms in Archean rocks.
Fig. 7. Correlated LM and CLSM photomicrographs of chert-permineralized Glenohyrtyion aenigmatis from Gaoyuzhuang Formation (the southern mountain of Pangjiapu, Hebei Province, China). (a, d) Transmitted light images (same fossils illustrated in Fig. 2d and e, respectively); (b, c, e, and f) Three-dimensional CLSM images viewed in the plane of the thin section (b and e) and rotated to an oblique view (c and f); Note apparent internal complexity within such microfossils potentially representing degraded cell contents. All scale bars in LM images are 10µm.

Fig. 8. Comparison of chert-permineralized cyanobacterial microfossils from Gaoyuzhuang Formation (the southern mountain of Pangjiapu, Hebei Province, China) with microfossils analyzed in situ, in petrographic thin sections, imaged by LM (a, d, g), and three-dimensional CLSM in the plane of the thin section (b, e, h) and rotated to an oblique view (c, f, i). (a–c) Eosynechococcus medius; (d–f) Nanococcus vulgaris; (g–i) Palaeoanacystis vulgaris (same fossils shown in Fig. 4). All scale bars in LM images are 10µm.

